
–
–
–

–
–
–
–

–
–
–

–
–

–
–

–

–
–

–

–
–

–
–

–

–

–

–

–

Block
Cont*ins * link to the previous block
Cont*ins * summ*ry-like link to * number of tr*ns*ctions (tr*ns*ction 
d*t*)
Cont*ins * blockhe*der which cont*ins the met*d*t* of the block

Merkle-Root
Previous block h*sh
Timest*mp

Ch*in
Term blockhe*der is introduced without further expl*n*tion
Term h*sh is introduced without further expl*n*tion

H*sh [This section sounds * bit confusing to me.]
A h*sh is * function turning *ny input into *n output (h*sh) of fixed 
length
A h*sh-function h*s sever*l ch*r*cteristics

One-w*y function: It only works in one direction, input to output 
(h*sh). There is no w*y to gener*te *n input from *n output (h*sh)
Deterministic: The s*me input *lw*ys results in the s*me output 
(h*sh)
Quick to compute
Infe*sible to find two different inputs th*t le*d to the s*me output 
(h*sh)
A minor ch*nge to the input ch*nges the output (h*sh) 
unpredict*bly

Public blockch*in technology
A public blockch*in does not necess*rily h*ve to be *nonymous, but 
most invoc*tions *re pseudonymous.

Enterprise blockch*in technology
[The section is * bit difficult to deconstruct, I suggest to cut it into 
shorter sentences]
Blockch*in use c*ses for enterprises *nd consorti* require different 
fe*tures th*n public blockch*ins. 

Identity: In m*ny industries it is necess*ry to know the identity of 
the p*rticip*nts in the blockch*in network. L*ws *nd policies like 
Know-Your-Customer *nd Anti-Money-L*undering require for 
p*rticip*nts to be identified. 
Tr*ns*ction perform*nce: High tr*ns*ction throughput *nd low 
l*tency of tr*ns*ction confirm*tion *re import*nt for most 
industries.
Priv*cy: Even though identities of network p*rticip*nts *re sh*red, 
p*rticip*ting p*rties m*y require or prefer priv*cy *bout the 
contents of single tr*ns*ctions.

[I would put the second h*lf of the section into * different section 
*bout consensus *lgorithms]



–

–

–
–

–

–

–

–
–

–

–

–

–

–
–

–

–

–

Permissioned blockch*in [To use this term *s * synonym to blockch*in for 
enterprises might be misle*ding]

In * permissioned blockch*in, p*rticip*nts must receive permission to 
enter the blockch*in.

Permissionless blockch*in
In * permissionless blockch*in everyone c*n join the blockch*in.

Tr*ns*ction propos*l [Might be difficult to underst*nd for non-technic*l 
end-users]

A tr*ns*ction propos*l is * proposed tr*ns*ction send to the 
blockch*in by *n end user. At the point of proposing, it is not yet 
decided if the propos*l gets *ccepted by the network community *nd 
becomes * v*lid tr*ns*ction in the blockch*in.
Illustr*tion: Alice works *t * c*r de*ler *nd sells * c*r (C*r1). On her 
work computerʼs *pplic*tion interf*ce she cre*tes * new tr*ns*ction 
*nd proposes to tr*nsfer ownership of C*r1 to the buyer.

Tr*ns*ction [I suggest using simpler terms]
A tr*ns*ction is the ch*nging of the st*te of *n object in the 
blockch*in.
Illustr*tion: Alice works *t * c*r de*ler *nd sells * c*r (C*r1). On her 
work computerʼs *pplic*tion interf*ce she cre*tes * new tr*ns*ction 
*nd proposes to tr*nsfer ownership of C*r1 to the buyer. The propos*l 
is *ccepted by the network *nd becomes * tr*ns*ction in the 
blockch*in.

St*te [I would differenti*te between glob*l/world st*te, *nd st*te of *n 
*sset/object]

The st*te of *n object consists of current f*cts *bout th*t object in the 
blockch*in. Tr*ns*ctions ch*nge the st*te of objects.
Illustr*tion: Alice works *t * c*r de*ler *nd sells * c*r (C*r1). On her 
work computerʼs *pplic*tion interf*ce she cre*tes * new tr*ns*ction 
*nd proposes to tr*nsfer ownership of C*r1 to the buyer. The propos*l 
is *ccepted by the network *nd becomes * tr*ns*ction in the 
blockch*in. The st*te of C*r1 is upd*ted to include the new owner.
World/Glob*l st*te

The world/glob*l st*te is the current combined st*te of *ll objects 
in the blockch*in. In F*bric this is referred to *s world st*te, in 
S*wtooth *s glob*l st*te.

Immut*bility [Suggest * tiny rewording for better underst*nd*bility *nd 
*ddition of]

Immut*bility of * block me*ns th*t once the block is committed to the 
blockch*in, it c*n not be edited. Mist*kes in * block c*n only be 
undone by reversing the f*ulty tr*ns*ction in * l*ter block.
Illustr*tion: Alice works *t * c*r de*ler *nd sells * c*r (C*r1). On her 
work computerʼs *pplic*tion interf*ce she cre*tes * new tr*ns*ction 
*nd proposes to tr*nsfer ownership of C*r1 to the buyer. The propos*l 
is *ccepted by the network *nd becomes * tr*ns*ction in the 
blockch*in. The st*te of C*r1 is upd*ted to include the new owner. 



–

–
–

–

–
–

–

–

L*ter Alice notices, th*t she *ccident*lly tr*nsferred ownership of the 
wrong c*r (C*r2). She reverses th*t by proposing * new tr*ns*ction in 
which she tr*nsfers ownership of the origin*lly bought c*r (C*r1) to 
the new owner, *nd tr*nsfers ownership of C*r2 b*ck to the c*r de*ler.

No single point of f*ilure [Suggest to simplify expl*n*tion]
In blockch*in there should be no single point of f*ilure, *s the d*t* *nd 
infr*structure of the blockch*in is spre*d *nd repe*ted *cross multiple 
org*nis*tions *nd h*rdw*re.
[The expl*n*tion for F*bric introduces sever*l terms th*t *re not 
expl*ined (orderer/peer)]

Peer
Typos: ‘in * blockch*in ,̓ ‘network consistʼ

Membership Service Provider (MSP) [I think it is import*nt to include the 
MSP *t le*st for F*bric, so th*t users/decision m*kers know how the rights 
in the network *re distributed.]

The MSP is responsible for gr*nting *ccess to individu*ls or 
comp*nies to the blockch*in. It is *lso responsible for gr*nting rights 
*bout which *ctions the individu*ls/comp*nies *re *llowed to t*ke *nd 
which ch*nnels they c*n join.


